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Resonance-enhanced signal detection and transduction in the Hodgkin-Huxley neuronal system

Yuguo Yu, Wei Wang, Jiafu Wang, and Feng Liu
National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
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The ability of signal detection and transduction of the Hodgkin–Huxley neuronal systems, associated with
rhythmic oscillations in the presence of external modulations, is studied. Both inhibitory and excitatory modu-
lations, regarded as the total effects of the environment in which the neurons are located, are able to modulate
the frequencies of the rhythmic oscillations of the neurons. Either subthreshold or suprathreshold rhythmic
oscillations can provide the neural system with an effect of frequency selection in processing external signal.
Resonance among the noise, the noise-induced oscillation, and the signal enhances intensively the capability of
the neurons in processing the weak signal, especially when frequency of the signal is around that of the
noise-induced rhythmic oscillation. Thus, the neuronal system can be adjusted to an optimal sensitive state for
signal processing through the environmental modulations.
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I. INTRODUCTION

Attempts to understand how individual neurons or ne
ronal networks process information have occupied scien
for decades. In the neural systems, neurons are alway
cated in an excitatory or inhibitory environment which a
tributes to various inputs, mainly the synaptic current, to
neurons. Many factors, such as fluctuations of synaptic in
dendritic or soma membrane parameters, and so on, mak
environment noisy. All these effects together can be regar
as an external modulation of the environment to the neuro
It is suggested that the neurons can utilize such exte
modulation to process the input signals effectively@1,2#, and
the information processing is done under such condition

Recently, a phenomenon of stochastic resonance~SR! in
neural systems has been extensively studied both experim
tally @3–6# and theoretically@7–10#. By this nonlinear effect,
the responses of neurons to a weak periodic signal can
optimized by suitable noise. The occurrence of the SR
been argued to be a mechanism for weak signal detec
and transduction. In addition, the firing precision in respo
to a subthreshold stimulus can also be maximized by a n
with suitable intensity@9#.

More interestingly, it has recently been demonstrated
a subthreshold oscillation originating from the intrinsic ch
acteristic of neurons, in combination with external modu
tion, can provide the neurons with particular encoding pr
erties@11# and also can enhance the ability of the neuron
signal detection and transduction@1#. Especially, a phenom
enon of frequency sensitivity in weak signal detection h
been examined both experimentally@12# and theoretically
@13,14#. It was found that there exists a frequency range
30–100 Hz in which the signal detection and transduction
neurons are more effective@12#. That is, the coherence of th
spiking responses of neurons to those signals is enhan
improving the ability of the neurons to detect weak signa
Such a frequency sensitivity was argued to result from
resonance between the intrinsic oscillation and the sig
@12–14#.

The studies mentioned above pointed out the importa
of the intrinsic subthreshold oscillation in information pr
1063-651X/2001/63~2!/021907~12!/$15.00 63 0219
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cessing. In the presence or absence of the noise, the ne
as a nonlinear oscillating system, can utilize the nonlin
resonance between the external signal and intrinsic osc
tion to optimally detect, transduce or encode the signals w
frequencies and strengths in a certain range. Resonance
be the most economic way for processing the input sign
In addition, it is well known that in the peripheral or centr
nervous system spontaneous rhythmic oscillations are u
uitous phenomena@11#. How these rhythmic oscillations ar
generated and what roles these rhythmic oscillations pla
information processing are still unclear. Do these rhyth
relate to the intrinsic oscillations of neurons? How does
neuron~serving as a basic unit or informational process
which possesses the ability of self-adapting or se
adjustment! use a suitable external modulation to adjust
rhythmic oscillation for effectively processing the input si
nals? Obviously, these questions are important and inter
ing for the understanding on the mechanism underlying
information processing.

To address these questions, we make a study based
popular Hodgkin–Huxley~HH! neuronal model and a glo
bally coupled network. By numerical simulations we fin
that different environments~excitatory or inhibitory!, in
which the neurons are located, together with the intrin
characteristic of the neuron, can modulate a neuron or a
work to generate rhythmic oscillations. Such a rhythm p
vides the neural system with an effect of frequency pref
ence to external signals. In response to a weak signa
resonance among the noise, the noise-induced oscilla
and the signal enhance intensively the ability of the neu
system in detection and transduction of the external sig
especially when the frequency of the signal is around tha
the rhythmic oscillation of the neurons. The frequency of t
rhythmic oscillation can be adjusted by the modulations,
that the neurons can effectively process signals with vari
frequencies. This is of significant biological meaning.

This paper is organized as follows. In Sec. II the sing
HH neuronal model is described. The results and discus
for the single neuron case are presented in Sec. III, w
those for the neuronal network case are given in Sec.
Finally, a conclusion is given in Sec. V.
©2001 The American Physical Society07-1
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II. MODEL

Let us start by considering the HH neuronal model. T
HH neuronal model is a useful paradigm that accounts n
rally for both the spiking behavior and refractory propert
of real neurons@15#, which is described by four nonlinea
coupled equations: one for the membrane potentialV and the
other three for the gating variables:m, n, andh; that is,

dV

dt
5~ I ext~ t !1I ion~ t !!/Cm , ~1!

dm

dt
5~m`~V!2m!/tm~V!, ~2!

dh

dt
5~h`~V!2h!/th~V!, ~3!

dn

dt
5~n`~V!2n!/tn~V!, ~4!

with

I ion~ t !52gnam
3h~V2Vna!2gkn

4~V2Vk!2gl~V2Vl !,
~5!

I ext~ t !5I 01I 1 sin~2p f st !. ~6!

The ionic currentI ion(t) includes the usual sodium (I na),
potassium (I k), and leak (I l) currents. The parametersgna ,
gk and gl are the maximal conductances for the ions a
leakage channels, andVna , Vk , Vl are the corresponding
reversal potentials.m` , h` , n` andtm , th , tn represent the
saturated values and the relaxation times of the gating v
ables, respectively. Detailed values of parameters can
found in Refs.@15,16#. I ext(t) is the total external stimulus
received by the neuron.I 1 sin(2pfst) is a periodic signal with
I 1 and f s being the amplitude and frequency of the sign
respectively.

I 0 is a constant stimulus and is regarded as the simp
modulation to the neuron. A neuron always receives syna
inputs from other neurons in the network, and there are a
various fluctuations in its membrane. It is known that the
are thousands of neurons connected to each other in the
work. Thus, the average synaptic input to a neuron may v
slowly with time. For a simple case, the total inputs from t
environment could be assumed as a constant stimulusI 0.
Here, the value ofI 0 may be positive, i.e., excitatory, whic
can depolarize the postsynaptic membrane and increas
probability of the firing. Alternatively, the value ofI 0 may be
negative, i.e., inhibitory, which can hyperpolarize t
postsynaptic membrane and thereby reduce the possibili
the firing.

III. RESULTS FOR A SINGLE HH NEURON

In this section, we examine how the intrinsic subthresh
oscillation is influenced by the external modulation~see Sec.
III A !, and how the intrinsic subthreshold oscillation affec
the detection capability of the neuron to the periodic sig
02190
e
u-

d

ri-
be

,

st
ic
o

e
et-
ry

the

of

d

l

~see Sec. III B!. We demonstrate that the inhibitory or exc
tatory modulation can set the neuron to a suitable sens
state for detecting the input signals with various frequenc
In the presence of noise, we investigate how the neu
without external signal, produces coherent oscillations. T
effect of external modulation is also studied~see Sec. III C!.
It is found that the noise-induced oscillations provide t
neuron with an effect of frequency preference to the exter
signal. In the Sec. III D, we study mainly the effect of th
frequency preference and the SR on the detection and tr
duction of the external weak periodic signal.

A. Deterministic case without periodic input

The HH neuron is a self-excitable system. For a DC inp
I 0, the firing threshold isI c'6.2 mA/cm2 @16#. @Hereafter,
we do not give out the unit for all the currents, e.g., forI 0 ,
I 1, and the current appearing later.# WhenI 0,I c , the mem-
brane exhibits a damped subthreshold oscillation@see Fig.
1~a!# due to the fact that the stable fixed point is the glob
attractor of the system@see Fig. 1~b!#. The birth of the limit
cycle, i.e., the firing of spikes, occurs atI c owing to the
saddle-node bifurcation. The subthreshold oscillation res

FIG. 1. The potentialV(t) of a neuron varying with timeI 0

55 A/cm2. ~b! Phase plotdV/dt versusV with I 055 in which the
trajectory moves clockwise around the loop, and the equilibri
state is a global attractor.~c! The frequencyf 1 of subthreshold
oscillation of one neuron versus inputI 0 (I 0 increases from22 to
6!.
7-2



ed
45

y

g-

HH

.,
h
t
an
ig

ow

th
p

-

due
in-

fec-
of

uron
y

ifts

-

b-
ith
b-

y

ing
v-

cy

are
state
hat
um
the

be

eu-
or

ers,

e
he
ion
bil-
his
e-
nal

lla-
nt

on.
ith
a-
tect

on
la-

s

nc

-

RESONANCE-ENHANCED SIGNAL DETECTION AND . . . PHYSICAL REVIEW E63 021907
ing from the excitability inherent in the neuron is consider
to be intrinsic, and its frequency rises monotonically from
to 85 Hz asI 0 increases from22 to 6 @see Fig. 1~c!#. This
indicates that there exists a dependence of the frequenc
the intrinsic oscillation onI 0. In the following, we shall ex-
amine the role of the intrinsic oscillation playing in the si
nal processing.

B. Deterministic case with periodic input

Now we investigate the dynamical responses of a
neuron to a periodic signal@17,18# in both cases of excitatory
~e.g., I 0.0) and inhibitory~e.g., I 0,0) modulation. First,
we consider the dependence of the critical amplitudeI 1c of
the signal on its frequencyf s . Figure 2~a! shows the fre-
quency dependence ofI 1c on f s for different values ofI 0.
Here all values ofI 0 are smaller than its critical value, i.e
I 0,I c . The curves are nonmonotonic and give out t
boundary between the nonfiring and the firing states. I
noted that in these three curves there exists a frequency r
of 30–100 Hz, i.e., a sensitivity frequency band for the s
nal detection, where a lower signal strengthI 1 can evoke the
neuron to fire. When the frequency of the signal is very l
( f s,0.7 Hz) or very high (f s.100 Hz), the thresholdI 1c
increases monotonically as the value off s increases. This is
similar to the case in the bistable system, which is due to
hysteresis of the nonlinear response of the system to the
riodic input @19#. In the intermediate range (0.7, f s
,100 Hz), the thresholdI 1c first decreases and then in
creases, and there is a minimum ofI 1c within 30–80 Hz.

FIG. 2. The firing onset curve of the HH neuron in the abse
of noise: ~a! The threshold amplitudeI 1c versus input signal fre-
quency f s for I 0523, 0, and 1, respectively.~b! The optimally
resonant frequencyf opt versus different value ofI 0. ~c! Correlation
between the optimal resonant frequencyf opt and the frequencyf 1 of
the subthreshold oscillation forI 0 varying from22 to 6.~d! Details
of I 1c versusf s for 0, f s,35 Hz. There are two crossovers divid
ing the firing onset curves into three frequency regions.
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of

e
is
ge
-

e
e-

Physically, the existence of such a frequency range is
to the nonlinear resonance between the aforementioned
trinsic oscillation and the periodic signal@14#. When both
frequencies are matchable, the input signal can most ef
tively transfer energy to the neuron to evoke the firing
spikes. Thus, less stimulus strength is needed for the ne
to fire. For eachI 0, there is an optimally resonant frequenc
f opt at which a maximal resonance occurs and a minimalI 1c

is obtained. It is worth noting that the frequency range sh
to high frequency asI 0 increases. Figure 2~b! shows the
relation of f opt againstI 0. We find that the optimally reso
nant frequencies are in a range of 30–80 Hz whenI 0 varies
from 26 to 6, in a range of physiological significance. O
viously, the change of the optimally resonant frequency w
I 0 is due to the fact that the frequency of the intrinsic su
threshold oscillation varies withI 0. This can be seen clearl
in Fig. 2~c!. For I 0 in the range from22 to 6, the correlation
between the frequencyf 1 of the subthreshold oscillation@see
Fig. 1~c!# and the optimally resonant frequencyf opt is shown.
The perfect linear correlation~with correlation coefficient
R.0.99) reflects the consistency of both frequencies vary
with I 0. This implies that the subthreshold oscillatory beha
ior of the neuron provides itself with an effect of frequen
selection to input signal via resonance. SinceI 0 represents
the total effects of the environment, the dependence off opt
on I 0 suggests that the environment in which neurons
located can modulate the neurons to a suitable sensitive
for detecting the input signals with various frequencies. T
is, the signal processing may be carried out with a minim
expenditure of energy by a maximal resonance between
intrinsic oscillation and the signal if the modulation can
properly controlled by changing the value ofI 0. In the neural
system, such modulations may be performed by various n
rotransmitters, neuromodulators, synaptic connection,
background oscillations, etc.@2#.

Furthermore, it is noted that in Fig. 2~d! there are roughly
three frequency ranges which are divided by two crossov
i.e., f s,5.25 Hz, 5.25, f s,25 Hz, and f s.25 Hz, re-
spectively. In the region of 5.25, f s,25 Hz, the inhibitory
modulation~e.g., I 0523) is better than the excitatory on
~e.g.,I 051) for the neuron to detect the input signals. On t
contrary, in the other two regions, the excitatory modulat
is more effective than the inhibitory one to enhance the a
ity of the neurons for the detection of the input signals. T
results from the difference of the optimally resonant fr
quency region and may have significant effects on the sig
detection. Thus, the occurrence of different rhythmic osci
tions for the neurons may be due to their location in differe
modulatory environments, which needs further confirmati
All these suggest that different modulations, together w
the intrinsic oscillation, may result in an effective mech
nism of frequency selection by which the neurons can de
and transduce input signals effectively@1,13,14#.

C. Stochastic case without periodic input

In order to examine the ability of the signal transducti
of the neurons in more realistic cases of different modu
tions, we add a noisy currentI noiseto the neuron in two case

e

7-3
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FIG. 3. ForI 050, the membrane potentialV(t) of a neuron varying with time for a noise withD51 ~a!, andD55 ~b!. ~c! The PSD
~in log10 scale!, represented byP( f ), of the noise-induced firings for three noise intensities in the case ofI 056. ~d! The measure of
coherenceb versus noise intensityD for different I 0. ~e! The frequencyf peakof the main peak in the PSD versusD for different I 0. ~f! For
D510, the frequencyf peak of the main peak in the PSD versus the currentI 0.
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of I 0523 and 1, respectively. Here,I noise represents the
noisy component of the stimulus to a neuron from exter
fluctuations or intrinsic fluctuations of the neuron itself. W
model this noisy current as an additive noise from
Ornstein–Uhlenbeck~OU! process,

td

dInoise

dt
52I noise1A2Dj~ t !, ~7!

wherej(t) is Gaussian white noise, andD and td are the
noise intensity and the correlation time of the OU noise.
the following numerical simulations, we lettd52 ms. Thus
I ext(t) is now set as

I ext~ t !5I 01I noise. ~8!

Here,I 0 together withI noise is the external modulation. Thi
may be a more realistic consideration of the external mo
lation to the neuron. Due to the introduction of the noise,
dynamic equations for the neuron become stochastic. In
following, the numerical integration of stochastic HH equ
tions is done by using second-order stochastic Runge–K
02190
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algorithms suggested in Ref.@20# to obtain a required accu
racy, and the time step is taken as 0.02 ms.

The weak noise makes the membrane potential fluctu
near the firing threshold and display sustaining subthresh
oscillation @see Fig. 3~a!#. Occasionally, spontaneous spik
occur due to the noise-induced threshold crossing. When
noise intensity becomes slightly large, noise-induced firin
@see Fig. 3~b!# around a main frequency occur which ma
relate to a so-called coherence resonance~CR! @21# and has
been discussed in detail in Ref.@22#. Here, the main fre-
quency denotes the highest peak of the PSD@see Fig. 3~c!#,
reflecting the most intervals of the firings. Figure 3~c! shows
the PSD, represented byP( f ), for three different noise in-
tensities D52, 10, and 50, respectively, forI 056. The
maximal coherence of the system is around a noise withD
510 ~see the following discussion!.

We can characterize the CR quantitatively via a cohere
factor b @22#, which is a measure of coherence and defin
as

b5h fpeak/D f peak, ~9!
7-4
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where h and f peak are the height and the frequency of th
highest peak in the PSD, andD f peak is the width of the peak
at its half maximal height. Thus, for various values ofI 0, the
occurrence of CR can be seen clearly from the dependenc
b on D @see Fig. 3~d!#. It is clear that the coherence becom
strong as the value ofI 0 increases. From Fig. 3~d!, we note
that for eachI 0, there exists an optimal noise intensityD
with which the value ofb is maximal, especially for the
cases of largeI 0. ~WhenI 0<23, the CR is inconspicuous.!
Similar to the mechanism of CR for neurons near the bif
cation point@22#, there exist two time scales in the syste
one is the periodT0 of oscillations of the limit cycle~the
firing!, the second is the activation timeTa , i.e., the mean
time to drive the system from its stable point to the lim
cycle region. For a fixed value ofI 0, when the noise intensity
increases to an optimal level, the noise-induced activa
time reaches a value which is matchable withT0, leading to
the maximal coherent motion of the neuron, i.e., the ma
festation of the CR@22#. WhenI 0 decreases, i.e., setting th
system far from the bifurcation point, a large value of t
noise intensity is needed to decreaseTa so as to obtain a
matching withT0. That is, for a smallI 0, one needs a large
optimal noise intensity to obtain a maximal coherence of
system. This can be seen from the results shown in Fig. 3~d!.

Since the CR phenomenon is also found in the syste
without the intrinsic oscillation, e.g., the leaky integrate-an
firing neuron@23#, in this work firings around a main fre
quency may be the properties of the CR in the HH neuro
not the general CR. To see this clearly, let us study the
tors affecting the frequency characteristic of the noi
induced oscillations of the stochastic HH neuron. Noted t
the CR in the HH neuron near the bifurcation point is trea
in Ref. @22#. Differently, the HH neuron treated here is f
from its bifurcation point. As a result, the time scale
noise-induced oscillation depends largely on the noise in
sity D @see Figs. 3~a! and 3~b!#. From Fig. 3~e!, we note that
the frequencies of the noise-induced oscillations dep
mainly on both the noiseI noiseand the modulationI 0. When
the noise intensityD varies from 5 to 80, forI 0523, f peak
in the PSD increases from 30 to 66 Hz, while forI 056, f peak
of the PSD increases from 62 to 78 Hz. Nevertheless, w
D is set out of this range, the main peak will be much lo
and broad. For each fixed noise intensity, there is a mo
tonic increasing of the peak frequencyf peakwith the increas-
ing of I 0, for example, see Fig. 3~f!, which shows a relation
of f peakvarying with I 0 for D510. As a result, the frequenc
characteristic of the noise-induced oscillation indeed or
nate from the intrinsic oscillatory behavior of the HH ne
ron, as the reason forf opt ~see Fig. 2!, and the frequency o
the firings induced by the CR is close to the subthresh
intrinsic frequency.~Recently, there is a detailed discussi
about the noise-induced eigenfrequency for different case
a stochastic FitzHugh–Nagumo model systems@24#.!

Therefore, either subthreshold or superthreshold osc
tions can be regarded as the manifestation of the intrin
oscillations. These oscillations have been observed ex
sively in experiments in various neuronal types, such as
neocortical neurons@25# and thalamic neurons@26#. The
fluctuating modulation, together with the inherent bistabil
02190
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of the neuron, plays an important role in generating th
oscillations. It was suggested that these oscillations prov
an internal time clock for neural information detection, tran
duction, and encoding, and even supply a mechanism un
lying synchronization and binding function for neuronal a
tivities @11,27#.

D. Stochastic case with periodic input

From the above discussion, due to the CR effect, a no
HH neuron can be viewed as a spontaneous rhythmic o
lator. It is interesting to examine what happens when an
ternal weak signalI 1 sin(2pfst) (I 1 is set as 1mA/cm2 to
make the signal be subthreshold! is input to such an oscilla-
tor.

Figure 4 shows the relationship of the signal-to-noise ra
~SNR! @28#, represented byr SNR, versus the frequencies o
the weak periodic signals for different values ofI 0 in the
case of a fixed noise intensityD55. It can be seen clearly
that the SNRs for the frequencies located in 20–100 Hz h
large values for all curves. This indicates that the neuron
more sensitive to the signals with frequencies in this ran
That is, the ability of the neurons in processing the signal
significantly improved in the presence of a weak noise,
pecially as the frequency of the signal is in the sensitiv
region.

Generally, the SR is an effect which describes the coin
dence of two time scales in a periodically modulated mu
stable, noisy nonlinear system. One time scale is the pe
of the periodic forcing or signal and the other relates to
well-to-well switching rate induced by the noise. The op
mal enhancement effect on the switching is obtained a
suitable noise level which produces a maximum coopera
between the noise-induced transitions and the periodic
nal. Now, for a noisy HH neuron, due to the intrinsic osc
lation, the noise-induced threshold crossing rate is aroun
main frequency related to the natural frequency of the n
ron. Thus, when an external signal is input to such an os
lator, the time scale related to the noise is determined no
a general threshold transition rate, but a rate around a m
frequency of the noise-induced oscillation. When the f
quency of a periodic signal is close to this rate, the cohere

FIG. 4. The SNR, represented byr SNR, of a neuron versus inpu
signal frequencyf s for I 054, 1, and23 in the case ofD55,
respectively.
7-5
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FIG. 5. ~a!–~c! r SNR of a neuron versus noise
intensity D for various signal frequenciesf s in
the case ofI 0523 and 1, respectively.~d! r max

versus frequencyf s of input signals forI 0523
and 1, respectively.~For eachf s , r max is obtained
in different optimal noise intensitiesD.!
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of the motion of the system will be strengthened largely
the resonance, through which the neuron fires spikes aro
the maxima of the signal and more energy of the envir
ment is transferred to the output signal, leading to a la
value of the SNR. The noise-induced oscillation provides
effect of frequency preference to external signal for the n
rons in a noisy environment. This is the physical reason
the existence of the frequency sensitivity range of 20–1
Hz for the periodic signal. Indeed, such a resonance
cooperative effect among the noise, the noise-induced o
lation and the external signal, which is related to the SR. T
conditions for generating such a resonance include three
tors: the noise, an intrinsic oscillatory behavior of the no
linear system, and a weak periodic signal.

In addition, from Fig. 4, we note that, for eachI 0, there is
a maximal value of SNR around its optimally resonant f
quency. AsI 0 increases, the whole frequency sensitive ran
~20–70 Hz forI 0523) shifts to a slightly higher frequenc
region~30–100 Hz forI 054). This can be understood from
the results shown in Fig. 3~e! and the above discussion. Di
ferent values ofI 0 can adjust the intrinsic frequency chara
teristic of the noise-induced oscillations, and thus set
neuron to different sensitive states in signal processing.

It is easy to think that for each signal there will exist
optimal noise intensity which makes the resonance am
the noise, the noise-induced oscillation, and the signal
maximized via SR. Figures 5~a!–5~c! show the SNR versus
the noise intensityD for different frequencies of signals, e.g
f s52, 10, and 70 Hz, respectively. We can see that all
curves clearly exhibit a typical characteristic of the SR:
value of SNR first sharply rises and then drops as the n
intensity increases. For each frequency, there exists an
02190
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mal noise intensityD with which the neurons can obtain
maximal value of the SNR. Figure 5~d! presents the relation
ship of the maximal SNR, represented byr max, versus the
frequencyf s of the input signal in the cases ofI 0523 and
I 051, respectively. From Fig. 5~d!, we can see that there i
a crossover aroundf s525 Hz. Whenf s,25 Hz, we find
that there always exists a suitable noise region with wh
the neurons can obtain a higher SNR for the inhibito
modulations ~e.g., I 0523) than that for the excitatory
modulations~e.g., I 051). On the contrary, for the signal
with high frequencyf s.25 Hz, the excitatory modulation
are more effective for neurons to obtain a high SNR. T
crossover may result from the crossover in the firing on
curves shown in Fig. 2~d!. Therefore, it is clear that in Fig
5~d! the excitatory modulations are of great advantage for
neurons in detection and transduction of the signals w
frequencies in a range of 30–70 Hz, the same as theg fre-
quency band. Differently, the inhibitory modulations ha
the advantage for the neurons in detection and transduc
of signals with low frequencies. It is noted that the optim
noise intensity of these maximal SNRs are basically the sa
for different frequencies.

The above studies mainly deal with the cases of a sin
neuron with the noisy modulations. Although our consid
ation of both the excitatory and the inhibitory modulatio
includes the fluctuations of the environment, the real sit
tion should be more complex and more detailed consid
ation is needed. However, we believe that the general ph
cal picture is the same.

IV. RESULTS FOR A NETWORK

Now, we construct a globally coupled HH neuronal ne
work and examine the effects of the excitatory or inhibito
7-6
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modulations on the ability of transduction to the period
signals. The model for the network is presented in Sec. IV
In the absence of the signal, a phenomenon of noise-indu
synchronized rhythms is studied in Sec. IV B. We also stu
the effect of the excitatory and inhibitory connections on
features of those rhythms. As in the single neuronal ca
these synchronized rhythms provide the network with an
fect of frequency preference. Finally, in Sec. IV C, we stu
mainly the effect of the frequency preference and the re
nance on the capability of the network in detection and tra
duction of the weak signal.

A. The network model

The dynamic equations for the network consisting of
HH neurons can be presented as follows@14,16#:

dVi

dt
5~ I ext

i ~ t !1I ion
i ~ t !!/Cm ,

i 51,2, . . . ,N, ~10!

where the ionic currentI ion
i is the same as defined in the ca

of the single neuron, andI ext
i (t) is assumed as

I ext~ t !5I 01I syn
i ~ t !1I 1 sin~2p f st !1I noise~ t !. ~11!

Here we letI 050 in order to study mainly the effect o
I syn

i (t) on the neurons. As in the single neuron case,
summation ofI syn

i (t) andI noise(t) are considered as an exte
nal modulation to thei th neuron in the network. The ampl
tude of the signalI 1 is set as 1mA/cm2. The number of
neurons in the network is taken asN5200. The synaptic
currentI syn

i (t) is described as

I syn
i ~ t !52

1

N (
j 51,j Þ i

N

gsyna
i~ t2t j !3~Vi2Vsyn

i j !, ~12!

with

a i~ t !5~ t/t!exp@2t/t#.

In Eq. ~11! gsyn is a parameter of the synaptic conductan
and the peak synaptic conductance isgsyn/e. Vsyn

i j is the syn-
aptic potential between thei th and thej th neurons.t is the
characteristic time of the synaptic interaction, which is se
2 ms.t j is the time when the interaction starts, i.e., the tim
of the firing of the presynapticj th neuron.

Whether the synaptic effect is excitatory or inhibitory d
pends on the value ofVsyn

i j . For the excitatory synapse
Vsyn

i j 50 mV, we haveI syn.0. Differently, for the inhibi-
tory synapsesVsyn

i j 5280 mV, we haveI syn,0. In order to
introduce the inhomogeneity in the network, we assume
some synapses are randomly excitatory and some rand
inhibitory. That is, we letVsyn

i j be randomly equal to either
280 or 0 mV. Thus, the average synaptic input to the n
rons in the network is
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,I syn~ t !.52
1

N2 (
i 51

N

(
j 51,j Þ i

N

gsyna
i~ t2t j !3~Vi2Vsyn

i j !.

~13!

Clearly, this average of the synaptic activities associates w
the so-called local field potential~LFP! @29#, which can be
regarded as a modulation to each neuron in network as
cussed in the above section. Furthermore, we consider
synaptic connection to be global, i.e., each neuron rece
N21 synaptic interactions~or couplings! from all other neu-
rons in the nervous system. We defineh as the percentage o
the excitatory couplings in the total number of the synap
interactions. Therefore, the resultant value of,I syn(t). is
mainly affected byh.

The output of the network is defined as

Vout~ t !5
1

N (
i 51

N

u~Vi~ t !2V* !. ~14!

V* is a membrane potential threshold~here, V*
5220 mV), andu(x)51 if x.0 and u(x)50 if x,0.
Here we consider the average of the firing activities of
neurons as the output of the network, which may encode
input signal.

B. Stochastic case without periodic input

First, we letI 150, i.e., in the absence of external signa
and study the dynamical features of the network in the pr
ence of noise. Figures 6~a!–6~f! show the time evolution of
the firings and the corresponding averaged synaptic cur
,I syn(t). with different noise intensitiesD in the case of
h550% andgsyn52 ms/cm2. ForD50.5, the firing phases
of the neurons in the network are random in time and
irrelevant to each other@see Fig. 6~a!#. ,I syn(t). is low and
shows high randomicity@see Fig. 6~d!#. However, the spa-
tiotemporal order is optimized by a suitable noise with inte
sity D55 via a CR-like mechanism, and the coherent sy
chronized rhythmic oscillation is obtained@see Fig. 6~b!#.
,I syn(t). has a large value and exhibits an apparent p
odicity @see Fig. 6~e!#. When the noise intensity increases
a large value, e.g.,D540, the stochastic nature of the nois
dominates the dynamics of the network, and the synch
nized firings are destroyed@see Fig. 6~c!#. The relevant
,I syn(t). becomes low and random@see Fig. 6~f!#. Associ-
ated with the CR behavior in the single neuron case, w
the noise is weak, the firings of individual neurons in t
network are few and random in time, showing few corre
tions with each other. As the noise intensity increases, n
rons generate self-sustained oscillations, which may act a
internal clock affecting the dynamics of the network. Th
coupling between the neurons plays an important role for
coherent oscillations. When the coupling strength is we
e.g.,gsyn,0.5 ms/cm2, it is found that the firing phases o
neurons in the network are all random in time and irrelev
to each other for various noise intensities. There is no coh
ent synchronized rhythmic oscillation. Only when the co
pling strength be large, e.g.,gsyn>2 ms/cm2, the network
shows spatiotemporal ordered firings since the neurons
7-7
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FIG. 6. The spatiotemporal firings and corr
sponding averaged synaptic current,I syn(t). of
the network withh550% andgsyn52 ms/cm2

for different noise intensities:D51 @~a!and ~d!#,
D55 @~b! and ~e!#, andD540 @~c! and ~f!#.
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forced to fire in phase by the strong coupling. Such orde
firings are optimized by a suitable noise intensity, showin
CR-like behavior like the one shown in Fig. 6~b!. In brief,
the noise-induced spiking can evolve to a refined spatiot
poral order through the dynamical optimization among
autonomous oscillation of individual neurons, the coupli
of the network, and the noise. This may be the mechan
underlying the CR-like phenomenon of the HH neuronal n
work. This phenomenon can be seen more clearly from
corresponding PSDs of the output of the network shown
Fig. 7. For a suitable noise withD55 a sharp peak appea
and is located at the frequency of the synchronized rhyth
oscillations~or firings! of the network. When the noise in
tensity increases, the peak becomes broad and low. A
evant measure of coherenceb, i.e., Eq. ~9!, versusD is
shown in the inset of Fig. 7. It is seen thatb increases dra-
matically withD first, showing the onset of synchronizatio
Then a wide plateau for the value ofb is followed, indicat-
ing that due to the strong coupling, the self-evolved synch
nized rhythm is stable against a large range of noise inte
ties. Finally, b decreases quickly as the noise intensityD
increases further.

Now, we investigate the effect ofh on the dynamics of
the network. With a same noise intensityD55, Fig. 8~a!
shows the PSDs~in logarithmic scale! of the output of the
network for differenth. It is seen that the frequencies of th
rhythmic oscillations of the neurons vary from 40 to 60 H
as the value ofh increases. For each value ofh, there is an
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optimal noise intensity~or a small range! where the factorb
has a maximal value. The dependence ofb on the noise
intensity D corresponding to the maximal coherence is
bell shape for eachh ~cf. the inset in Fig. 7!, and there is a
little difference between the optimal values ofD correspond-
ing to the maximal coherence of the network. The period
the noise-induced firings of the network seems to be cha
terized by the sum of the width of the output pulse and
refractory period, namely about 20 ms@cf. Fig. 3~b!#, so the
peak frequencies become close to each other about 50
which is indeed in a range of 40–60 Hz. The difference

FIG. 7. Corresponding to Figs. 6~a!, 6~b!, and 6~c!, the PSDs~in
log10 scale! of the output of the network. Inset: The measure
coherenceb versus different noise intensities.
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frequencies of the network may be caused by the differe
of the optimal noise intensity corresponding to the maxim
coherence for differenth. Figures 8~b! and 8~c! show the
time evolution of,I syn(t). for two differenth. The aver-
aged synaptic currents in these two cases display clearly
riodic features as that shown in Fig. 6~e!. Except the periodic
feature, the amount of the excitatory component@with posi-
tive value of,I syn(t).#, the peak value and the width of th
pulses in,I syn(t). are different for differenth. Different
disturbances, whether positive or negative, of,I syn(t). re-
sult in different firing states of the neurons in the netwo
leading to the difference between the optimal values ofD for
various h. In addition, by observing the time series
Vout(t) and ,I syn(t). for h520% simultaneously, it is
found that the positive disturbance of,I syn(t). is effective
for the firing. This is also for the case ofh.20%. However,
the presence of negative disturbance may raise the fi
probability of the neurons for the following positive one,
discussed in Ref.@30#, which needs further study in our cas

Based on the discussion above, we conclude that
physical reason for the frequency characteristic of the n
work is due to the difference of the optimal noise intensit
for different values ofh. The modulation to the neurons i
the network includes a pulselike synaptic component, wh
is the sum of alpha functions, i.e., Eq.~12!. These are clearly
related to the magnitude ofh and the couplinggsyn which
can adjust the frequency of the rhythmic firings of the n
work, as shown in Fig. 8~a!.

C. Stochastic case with periodic input

The noise-induced synchronized rhythmic oscillation c
be viewed as spontaneous rhythmic oscillation of the n
work in the noisy environment. It is interesting to explore t

FIG. 8. ~a! The PSD~in log10 scale! of the output of the network
with gsyn52 ms/cm2 and a fixed noise intensityD55 for different
ratio of excitatory to inhibitory couplingsh. Averaged synaptic
input ,I syn(t). versus time in the case ofD55 and gsyn

52 ms/cm2 for h520% ~b!, and 80%~c!.
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role of this rhythmic oscillation playing in the informatio
processing. From Fig. 8~a!, we note that the frequency o
rhythm of the network forh550% is about 50 Hz, This also
can be seen from the PSD of the spike trains of one neuro
the network forh550% @see Fig. 9~a!#. Compared with the
CR case in a single neuron, the peak in the PSD of a neu
in the network is much higher and narrower. This is due
the effect of recurrent synaptic current of the network. Und
such a condition, when a periodic signal is input to the n
work, the corresponding PSDs of the spike trains of o
neuron in the network are shown in Figs. 9~b!–9~d!. We find
that when the frequency of the signal is near 50 Hz, roug
within a range of 45, f s,55 Hz, the noise-induced pea
becomes very small and even disappears, while the si
peak is intensively enhanced and locates tightly in the
quency of the signal. Without doubt, a nonlinear resona
occurs, which makes the system absorb intensively the
ergy of the environment~including the noise! and oscillate
tunefully with the external periodic forcing. In such a cas
the coherent motion of the neurons is maximized by the s
nal and the noise. Thus, the neurons in the network
spikes with more strong coherence with the signal, leadin
a high peak in the PSD. When the frequency of the signa
far away from that of the noise-induced rhythm of the n
work, such as forf s540 and 60 Hz, the two distinct time
scales in the system one from the signal, and the other f
the coherent oscillation induced by the noise are unma
able. Thus, a competition between two dynamical modes

FIG. 9. ~a! With the same condition in Fig. 8~a!, the PSD of the
spike trains of one neuron in the network forh550%. When input
a signal to the network, the relevant PSD forf s540 Hz ~b!, 50 Hz
~c!, and 60 Hz~d!.
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pears in the oscillatory dynamics of the system, which res
in the coexistence of noise-induced peak and signal-indu
peak in the PSD.

Figure 10 summarizes these results, and shows the ca
lated SNRs from PSDs of one neuron in the network
different frequencies of signals in the case ofD55 andh
520%, 50%, and 80%, respectively. It is clear that when
frequency of the signal is around that of the spontane
rhythmic oscillation of the network, a large SNR is obtaine
It means that the weak signal with a frequency around tha
the rhythmic oscillation can be detected and transduced
ciently by the network. The spontaneous rhythmic oscillat
of the network provides itself with an effect of frequen
preference to input signal. Physically, such a phenomeno
due to the resonance or cooperation between the no
induced rhythmic oscillations and the input signals. As in
single neuron case, such a resonance is a coherence phe
enon among the noise, the noise-induced rhythmic osc
tion, and the external signal. In addition, it is noted that
frequency sensitivity range of the network is narrower th
that in the single neuron case~see Fig. 4!. This can be un-
derstood from Fig. 8~a!. The narrow and high peak in th
PSD reflects that due to the coupling, the dynamic moti
of the neurons in the network are more coherent than tha
the single neuronal case@see Fig. 3~c! and Ref.@22##. Thus,
the frequency selection of the neurons in the network
comes more preferential to some certain external signals

It is noted that the frequencies corresponding to the m
mum of the SNR are about 40 Hz forh520%, 50 Hz for
h550%, and 57 Hz forh580%, respectively. That is, fo
different h, the most frequency sensitive ranges are diff
ent. This can be understood clearly from Fig. 8~a! and the
above discussion. Obviously,h plays an important role in
adjusting the optimal frequency sensitive range. Finally, i
also worth noting that in Fig. 10 there exists a small pe
near the twice of the rhythmic oscillation frequency for ea
curve. This is due to the resonance between the signal
the second-order harmonic of the rhythmic oscillation.

The results of our simulations for the neural network g
three conclusions.~1! For a value ofh>20%, when the
coupling strengthgsyn is large enough, the synchronize
rhythmic oscillation can be induced and the coherence of
oscillations can be optimized by the suitable noise. The
quency of the rhythm is roughly in the range of 40–60 H

FIG. 10. The SNR of one neuron in the network withgsyn

52 ms/cm2 versus input signal frequencyf s in the case ofD55
for h520%, 50%, and 80%, respectively.
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Besides the noise,h plays an important role in modulatin
the frequency of the rhythm.~2! The synchronized rhythmic
oscillations of the network provide itself with an effect o
frequency preference to the input signals. The signals w
frequencies around that of the rhythm can be detected se
tively and transmitted effectively.~3! Frequency preference
and resonance among the noise, the noise-induced rhy
and the signal affect largely the ability of the network
processing the external signal.

V. DISCUSSION AND CONCLUSION

In this paper, we make a study on the effect of the ext
nal modulations on the ability of the neurons in process
information. The external modulations, which may be cau
by various neurotransmitters, the excitatory or the inhibito
synaptic inputs, or the membrane noise, are simplified
general as the sum ofI 0 and I noise(t). This models a fluctu-
ating input around a biasI 0.

It is well argued that the noise plays an important role
detecting faint, information-bearing signals via SR@3–10#.
Here we mainly study the modulatory effect ofI 0
1I noise(t), assumed as an environment, on the dynamics
the HH neurons. Our simulation results demonstrate t
such a modulation affects largely the frequency character
of the intrinsic oscillations~subthreshold or suprathresho
oscillations!, which may be in a range of 30–80 Hz. Th
intrinsic oscillatory behavior provides the neuron with
effect of frequency selection to external signal. When a we
signal is input to such an oscillator, a cooperative eff
among the noise, the noise-induced oscillation, and the
nal enhances intensively the ability of the neuron in proce
ing the external signal, especially when the frequency of
signal is around that of the intrinsic oscillation of the neuro
Thus, the neural system may utilize internal or exter
modulations to adjust itself to an optimally sensitive state
information processing via resonance. Especially, in the
frequency region (f s,25 Hz), we find that the inhibitory
modulation~represented by a negative value ofI 0) in com-
bination with noise is more beneficial to the neuron for t
signal processing than the excitatory modulation~repre-
sented by a positive value ofI 0). Nevertheless, the excita
tory modulation is of great advantage to the neuron in
processing of signals with frequencies in theg frequency
band.

To further examine the effects of the modulation on t
frequency sensitivity, we make a study on a neuronal n
work. The averaged synaptic current of the neuro
,I syn(t)., instead ofI 0, together with the noise curren
I noise(t), is a modulation of the network to every individua
neuron. When the synaptic coupling strength is large enou
a synchronized rhythmic oscillation or firing of the netwo
are induced and even enhanced by the noise via CR.
frequency of this rhythm is found in a range of 40–60 Hz f
20%<h<100%. As in the single neuronal case, this sy
chronized rhythm provides the network with an effect of fr
quency preference to external signal. When a signal is in
to the network, resonance among the noise, the no
induced rhythmic oscillation and the signal enhances int
7-10
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RESONANCE-ENHANCED SIGNAL DETECTION AND . . . PHYSICAL REVIEW E63 021907
sively the ability of the network in processing the input s
nal, especially when the frequency of the signal is near
of the rhythm. The ratio of the excitatory couplings to inhib
tory ones of the network can adjust the range of freque
preference of the network.

In conclusion, our results demonstrate the significance
the modulatory effects on the rhythmic activities of neu
systems in the process of signal detection and transduc
Resonance and frequency preference associated with
rhythmic oscillations of HH neuronal systems plays an i
portant role in signal processing.

All these results may provide us with an enlightenment
to why the working brain is characterized by various coh
ent rhythms on characteristic temporal scales. A host
rhythmic oscillators, mutually connected, may tune the
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selves to operate in frequency ranges of some special
logical meanings. Resonance and frequency preference
be the basic principles underlying the information process
and even in the realization of different behavioral and p
ceptual functions of the brain, which needs further study
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